Symbolic Computation of Strongly Connected Components Using Saturation

نویسندگان

  • Yang Zhao
  • Gianfranco Ciardo
چکیده

Finding strongly connected components (SCCs) in the state-space of discrete-state models is a critical task in formal verification of LTL and fair CTL properties, but the potentially huge number of reachable states and SCCs constitutes a formidable challenge. This paper is concerned with computing the sets of states in SCCs or terminal SCCs of asynchronous systems. Because of its advantages in many applications, we employ saturation on two previously proposed approaches: the Xie-Beerel algorithm and transitive closure. First, saturation speeds up state-space exploration when computing each SCC in the Xie-Beerel algorithm. Then, our main contribution is a novel algorithm to compute the transitive closure using saturation. Experimental results indicate that our improved algorithms achieve a clear speedup over previous algorithms in some cases. With the help of the new transitive closure computation algorithm, up to 10150 SCCs can be explored within a few seconds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic CTL Model Checking of Asynchronous Systems Using Constrained Saturation

The saturation state-space generation algorithm has demonstrated clear improvements over state-of-the-art symbolic methods for asynchronous systems. This work is motivated by efficiently applying saturation to CTL model checking. First, we introduce a new “constrained saturation” algorithm which constrains state exploration to a set of states satisfying given properties. This algorithm avoids t...

متن کامل

Saturation-Based Incremental LTL Model Checking with Inductive Proofs

Efficient symbolic and explicit model checking approaches have been developed for the verification of linear time temporal properties. Nowadays, advances resulted in the combination of on-the-fly search with symbolic encoding in a hybrid solution providing many results by now. In this work, we propose a new hybrid approach that leverages the so-called saturation algorithm both as an iteration s...

متن کامل

Lower Bounds for Symbolic Computation on Graphs

A model of computation that is widely used in the formal analysis of reactive systems is symbolic algorithms. In this model the access to the input graph is restricted to consist of symbolic operations, which are expensive in comparison to the standard RAM operations. We give lower bounds on the number of symbolic operations for basic graph problems such as the computation of the strongly conne...

متن کامل

Symbolic Robustness Analysis of Timed Automata

We propose a symbolic algorithm for the analysis of the robustness of timed automata, that is the correctness of the model in presence of small drifts on the clocks or imprecision in testing guards. This problem is known to be decidable with an algorithm based on detecting strongly connected components on the region graph, which, for complexity reasons, is not effective in practice. Our symboli...

متن کامل

DSSZ-MC - A Tool for Symbolic Analysis of Extended Petri Nets

DSSZ-MC supports the symbolic analysis of bounded place/ transition Petri nets extended by read, inhibitor, equal, and reset arcs. No previous knowledge of the precise boundedness degree is required. It contains tools for the efficient analysis of standard properties (boundedness, liveness, reversibility) and CTL model checking, built on an objectoriented implementation of Zero-suppressed Binar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010